Comments on the Noncommutative Differential Geometry of Quantum Homogeneous Vector Bundles
نویسنده
چکیده
Differential calculi are obtained for quantum homogeneous spaces by extending Woronowicz’ approach to the present context. Representation theoretical properties of the differential calculi are investigated. Connections on quantum homogeneous vector bundles are classified and explicitly constructed by using the theory of projective modules.
منابع مشابه
Quantum Groups on Fibre Bundles
It is shown that the principle of locality and noncommutative geometry can be connnected by a sheaf theoretical method. In this framework quantum spaces are introduced and examples in mathematical physics are given. With the language of quantum spaces noncommutative principal and vector bundles are defined and their properties are studied. Important constructions in the classical theory of prin...
متن کاملStability of additive functional equation on discrete quantum semigroups
We construct a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...
متن کاملA Global View of Equivariant Vector Bundles and Dirac Operators on Some Compact Homogeneous Spaces
In order to facilitate the comparison of Riemannian homogeneous spaces of compact Lie groups with noncommutative geometries (“quantizations”) that approximate them, we develop here the basic facts concerning equivariant vector bundles and Dirac operators over them in a way that uses only global constructions and arguments. Our approach is quite algebraic, using primarily the modules of cross-se...
متن کاملGEOMETRY Of QUANTUM HOMOGENEOUS VECTOR BUNDLES AND REPRESENTATION THEORY OF QUANTUM GROUPS I
Quantum homogeneous vector bundles are introduced by a direct description of their sections in the context of Woronowicz type compact quantum groups. The bundles carry natural topologies inherited from the quantum groups, and their sections furnish projective modules over algebras of functions on quantum homogeneous spaces. Further properties of the quantum homogeneous vector bundles are invest...
متن کاملNoncommutative Differential Geometry and Twisting of Quantum Groups
We outline the recent classification of differential structures for all main classes of quantum groups. We also outline the algebraic notion of ‘quantum manifold’ and ‘quantum Riemannian manifold’ based on quantum group principal bundles, a formulation that works over general unital algebras.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998